A charge Q is distributed over two concentric conducting thin spherical shells radii r and R (R > r). If the surface charge densities on the two shells are equal, electric potential at the common centre is

(1)
$$\frac{1}{4\pi\epsilon_0} \frac{(R+r)}{(R^2+r^2)} Q$$

(2)
$$\frac{1}{4\pi\epsilon_0} \frac{(R+2r)Q}{2(R^2+r^2)}$$

(3)
$$\frac{1}{4\pi\epsilon_0} \frac{(R+r)}{2(R^2+r^2)} Q$$

(4)
$$\frac{1}{4\pi\epsilon_0} \frac{(2R+r)}{(R^2+r^2)} Q$$

Answer Is (1)

Let charges on shells be q1 and q2

$$q_1 + q_2 = Q(i)$$

$$\frac{q_1}{4\pi r^2} = \frac{q_2}{4\pi R^2}$$
(ii)

We get
$$q_1 = \frac{r^2}{r^2 + R^2}Q$$
, $q_2 = \frac{R^2}{r^2 + R^2}Q$

$$V = \frac{1}{4\pi\epsilon_0} \left(\frac{q_1}{r} + \frac{q_2}{R} \right)$$

$$=\frac{1}{4\pi\epsilon_0}\frac{\left(R+r\right)}{\left(R^2+r^2\right)}Q$$